Spinal manipulative treatment (SMT) is the primary clinical approach in chiropractic care. The cellular and molecular mechanisms responsible for SMT remain elusive. It is well know that SMT influences neurophysiological activities. However, a question remains: How can very short transient changes of cellular electricity impact patients’ long-term health? We propose to address this issue by examining whether manipulate forces impact neurons at cellular and molecular levels, particular in epigenetic regulation of neuronal differentiation – a potential mechanism in neuroplasticity. This research project should yield important insights in understanding the long-term benefits of chiropractic care.

Grant Value:$40,000
Chief Investigator:
 Liang Zhang – Palmer College of Chiropractic
Status: Complete

Researcher update: