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in the contralateral hindpaw following an  L5 thrust com-
pared to control (p < 0.05). No other changes in spontane-
ous or noxious-evoked Sm activity were found. A delayed, 
but prolonged suppression of spontaneous Sm activity 
along with changes in noxious-evoked inhibitory responses 
in the contralateral hindpaw following lumbar vertebra 
thrust suggest that thalamic submedius neurons may play 
a role in central pain modulation related to manual therapy 
intervention.
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Introduction

The thalamus is a central structure consisting of a large 
collection of individual subnuclei that process and modu-
late all mechanoreceptor/nociceptor input destined for 
the cortex (Jones 2007; Yen and Lu 2013). The thalamic 
submedius (Sm) nucleus is medially located and is fre-
quently divided into rostral and caudal parts (Craig and 
Burton 1981; Dado and Giesler 1990; Yoshida et al. 1991, 
1992). The Sm receives afferent projections from the lateral 
hypothalamus, orbital cortex, trigeminal sensory nucleus, 
medial parabrachial nucleus, raphe nuclei, and bilateral 
dorsal horn neurons throughout the entire spinal cord. Spi-
nal projections primarily terminate in the rostral half of 
Sm in both the cat and rat, while spinal trigeminal nuclei 
projections terminate in the caudal half (Craig and Burton 
1981; Craig et al. 1982; Dado and Giesler 1990; Blomqvist 
et al. 1992; Yoshida et al. 1992). In the cat, spinal projec-
tions arise almost exclusively from the marginal zone (lam-
ina I), whereas in the rat the trigeminal projections arise 
from lamina I while the vast majority of spinal projections 

Abstract The thalamus is a central structure important 
to modulating and processing all mechanoreceptor input 
destined for the cortex. A large number of diverse mecha-
noreceptor endings are stimulated when a high velocity 
low amplitude thrust is delivered to the lumbar spine dur-
ing spinal manipulation. The objective of this study was 
to determine if a lumbar thrust alters spontaneous and/or 
evoked nociceptive activity in medial thalamic submedius 
(Sm) neurons. Extracellular recordings were obtained 
from 94 thalamic Sm neurons in 54 urethane-anesthe-
tized adult Wistar rats. Spontaneous activity was recorded 
5 min before and after an  L5 control (no thrust) and thrust 
(85% rat body weight; 100  ms) procedure. In a subset of 
responsive nociceptive-specific neurons, mean changes in 
noxious-evoked response (10-s pinch with clip; 795  g) at 
three sites (tail, contra- and ipsilateral hindpaw) were deter-
mined following an  L5 thrust. Mean changes in Sm spon-
taneous activity (60  s bins) and evoked noxious response 
were compared using a mixed model repeated measures 
ANOVA with Bonferroni post hoc t tests and paired t 
tests, respectively. Compared to control, spontaneous Sm 
activity decreased 180–240  s following the lumbar thrust 
(p  <  0.005). Inhibitory evoked responses were attenuated 

 * William R. Reed 
 wreed@uab.edu

1 Palmer Center for Chiropractic Research, Palmer College 
of Chiropractic, Davenport, IA, USA

2 Department of Surgery, Center for Anatomical Science 
and Education, Saint Louis University School of Medicine, 
St. Louis, MO, USA

3 Present Address: Department of Physical Therapy, School 
of Health Professions, UAB, The University of Alabama 
at Birmingham, Webb 318, 1720 2nd Avenue South, 
Birmingham, AL 35294-1212, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00221-017-5013-5&domain=pdf


 Exp Brain Res

1 3

arise from the deep dorsal horn and intermediate zone/ven-
tral horn (lamina V–VII) (Dado and Giesler 1990; Yoshida 
et  al. 1991, 1992). Electrical stimulation, lesions, and 
pharmacological microinjections of the Sm nucleus have 
been shown to modulate pain response in animals. (Rob-
erts and Dong 1994; Zhang et al. 1995, 1998, 1999; Xiao 
et al. 2005; Feng et al. 2008; Wang et al. 2008; Erfanpar-
ast et al. 2015). Evidence indicates that the Sm nucleus is 
involved in opioid receptor-mediated nociception modula-
tion (Wang et al. 2008; Tang et al. 2009; Erfanparast et al. 
2015), and as part of this nociceptive modulatory pathway, 
Sm efferent fibers terminate most heavily in the ipsilateral 
ventrolateral orbital cortex (VLO), lateral orbital cortex, 
and to a lesser extent in the insular cortex (Craig and Bur-
ton 1981; Yoshida et al. 1992; Tang et al. 2009). In addi-
tion to reciprocal connections between the Sm and VLO, 
VLO neurons also project to the midbrain periaqueductal 
gray (PAG), (Hardy and Leichnetz 1981; Craig et al. 1982) 
a region extensively implicated in descending inhibition of 
nociceptive inputs at the spinal cord level. The submedius 
nucleus subserves a number of physiological functions, but 
afferent and efferent connections along with behavioral and 
electrophysiological studies support a direct involvement of 
the Sm in mechanical/thermal nociceptive modulation.

Spinal manipulation is a non-pharmacological integra-
tive healthcare intervention that is recommended by clini-
cal guidelines and evidence reports for treating certain 
types of neck and low back pain (Chou et al. 2007, 2017; 
Bronfort et al. 2010). However, its efficacy and appropriate 
utilization are hindered due to the lack of current knowl-
edge regarding its underlying neurophysiological mecha-
nisms. Lumbar spinal manipulation is a mechanical stim-
ulus that typically involves applying a single, short lever, 
high velocity, low amplitude posterior–anterior thrust of 
short duration (≤150 ms) to a particular vertebra equating 
to 30–130% body weight of a 70  kg individual (Herzog 
et  al. 1993; Triano 2001; Bergmann 2005; Herzog 2010). 
Similar biomechanical thrust characteristics have been sim-
ulated and scaled for use in various animal models (Pickar 
1999; Reed et al. 2013, 2014a). Clinically, mechanical and 
thermal pain thresholds are increased (i.e., decrease tis-
sue sensitivity) within 5 min of the manipulative thrust in 
areas local and remote to those being treated in both symp-
tomatic and asymptomatic individuals (George et al. 2006; 
Bialosky et  al. 2009b, 2014; Coronado et  al. 2012). This 
widespread hypoalgesia has been attributed to alterations 
in central pain processing (Wright 1995; Boal and Gil-
lette 2004; Bialosky et al. 2009a), but the central pathways, 
structures, and mechanisms responsible remain undefined 
and thereby provides the underlying scientific rationale for 
the current study.

In the rat, submedius neurons typically have large (often 
bilateral) receptive fields and respond predominately to 

noxious convergent sensory input from spatially separated 
cutaneous, muscle, joint, and visceral tissues which sug-
gests a non-discriminatory role in nociception (Miletic and 
Coffield 1989; Dostrovsky and Guilbaud 1990; Fu et  al. 
2002). These attributes are particularly relevant to manual 
therapy because spinal manipulation has been hypothesized 
to stimulate as many as 40 types of peripheral receptors 
in both cutaneous and deep spinal tissues (Gillette 1987). 
Taken together, these neuronal characteristics make Sm 
nociceptive-specific neurons good candidates for investi-
gating supraspinal neurophysiological changes related to 
lumbar vertebra thrusts. The purpose of this study was to 
determine if adult rat lumbar vertebrae high velocity low 
amplitude thrusts alter spontaneous and/or evoked noxious 
thalamic Sm activity.

Materials and methods

All experimental methods were approved by the Institu-
tional Animal Care and Use Committee. Animals were 
housed in pairs and exposed to a 12-h light/dark cycle, 
environmental enrichment with food and water ad libitum. 
For electrophysiological recordings, 54 adult male Wistar 
rats (320–524 g; Envigo, Indianapolis, IN, USA) were ini-
tially anesthetized with isoflurane (2.5%) followed by an 
intraperitoneal injection of 50% urethane (1.2  g/kg). The 
jugular vein and carotid artery was catheterized for intrave-
nous (iv) infusion of fluids and blood pressure monitoring. 
The trachea was intubated for  pCO2 monitoring. Saturated 
oxygen concentration, heart rate, and respiration were mon-
itored by a MouseOx system (Starr Life Sciences Corp., 
Oakmont, PA, USA). Body temperature was monitored 
via a rectal thermometer and maintained at 37  °C with a 
water-circulating heat pad. To maintain an anesthetic state 
III-3 (Friedberg et al. 1999) throughout the duration of the 
experiment, depth of anesthesia was regularly assessed by 
monitoring hindpaw pinch withdrawal, corneal reflex, heart 
rate, respiration rate and vibrissae movements. Supplemen-
tal anesthesia (5% urethane; iv) was administered as indi-
cated (Hubscher and Johnson 2003; Reed et al. 2009).

Electrophysiology

The rat’s head was secured in a stereotaxic device (Kopf 
Instruments, Tujunga, CA, USA) with its dorsal surface 
positioned horizontally. A small hole was made bilater-
ally in the skull just lateral to midline and then expanded 
carefully with a small bone rongeurs to avoid rupture of 
the superior sagittal sinus. The dura was opened and the 
recording electrode was advanced incrementally into the 
thalamic submedius nucleus. Warm mineral oil was used to 
prevent tissue desiccation. Activity of thalamic Sm neurons 
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was recorded extracellularly with DiI-(1,1′-dioctabecyl-
3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate; Invitro-
gen, Carlsbad, CA, USA) coated tungsten microelectrodes 
(FHC, Bowdoin, ME, USA) having 6–8 MΩ impedance as 
previously described (Massey et al. 2006; Chadha and Hub-
scher 2008; Reed et al. 2009, 2014a). Thalamic submedius 
nuclei search coordinates were between −2.3 and −2.6 mm 
caudal to bregma, 0.5 and 0.9 mm lateral to midline, and 
6.0–6.9 mm below the cortex surface (Fig. 1a) (Kawakita 
et al. 1993; Sumiya and Kawakita 1997; Yang and Follett 
2003). The electrode was slowly advanced at a rate of 
1–5 µm per step using a motorized micromanipulator (Neu-
rostar, Germany) (Fig. 1b) until spontaneous isolated single 
unit Sm activity was identified. Signals from single tha-
lamic Sm neurons were passed through a high impedance 
probe (HIP511, Grass, West Warwick, RI, USA), amplified 
(P511K, Grass), recorded and evaluated off-line using a PC 
based data acquisition system (Spike 2, Cambridge Elec-
tronic Design, UK). Neuron receptive fields were mapped 
and recorded. All Sm neurons included in this study were 
classified as nociceptive-specific (high threshold) neu-
rons due to a lack of response to low threshold stimulation 
(innocuous stroking with nylon brush). While not exclu-
sive, nociceptive-specific neurons are the predominate type 
of Sm neuron found in the normal rats (Dostrovsky and 
Guilbaud 1988; Miletic and Coffield 1989; Kawakita et al. 
1993).

Spontaneous activity

The effect of high velocity low amplitude lumbar thrusts 
on spontaneous activity was determined as follows. Once 
single unit thalamic Sm activity was isolated, a timed-
control protocol was performed. This consisted of record-
ing spontaneous neural activity for 5 min before and after a 
no thrust procedure. Afterwards, spontaneous activity was 
again recorded for 5 min before and after a lumbar thrust 
protocol (peak amplitude of 85% rat body weight, 100 ms 
duration) (Reed et al. 2014a, b). Neural activity was quanti-
fied as impulses per period of time (10 or 60 s intervals). 
A computer controlled electronic feedback system (Lever 
System Model 310; Aurora Scientific, Ontario, Canada) 
(Pickar 1999) was used to deliver a linearly increasing 
dorsal–ventral thrust force at the  L5 vertebra via toothed 
forceps attached to the spinous process (Fig.  1b). Promi-
nent rat boney landmarks (ridge of iliac crests and large 
 L6 spinous process) were used to identify the  L5 spinous 
process for forceps attachment. The scaled  L5 thrust profile 
simulates the thrust magnitude, thrust duration and verte-
brae displacement (0.5–1.5 mm) of that delivered in clini-
cal settings (Herzog et  al. 1993; Nathan and Keller 1994; 
Gal et  al. 1997; Triano 2001; Ianuzzi and Khalsa 2005) 
albeit via forceps attached directly to spinous process so as 

to directly determine the amount of vertebra displacement. 
For spontaneous activity recordings, the control (no thrust) 
protocol always preceded the lumbar thrust protocol so as 
to prevent any potential long-lasting influence related to the 
thrust.

Noxious‑evoked response

To determine the effects of high velocity low amplitude 
lumbar thrusts on evoked Sm noxious response, a 10  s 
noxious pinch stimulus (small clip; 795  g; Roboz-RS 
5452, Gaithersburg, MD, USA) was applied in random 
order to three sites (tip of the tail, contra- and ipsilat-
eral hindpaws) prior to and following control and thrust 
procedures. To minimize the risk of potential periph-
eral sensitization, responses to evoked noxious stimu-
lation (at three sites) was performed on one Sm neuron 

L5 
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Sm Sm
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Fig. 1  Experimental setup. Schematic showing the recording loca-
tion of the thalamic submedius (Sm) neurons (a); and the experi-
mental set-up (b) including the microdrive (1), lever arm of feedback 
motor (2), toothed forceps attached to the  L5 spinous process (3), and 
spinal stabilization clamp attached to the L2 spinous process (4), and 
hip pins (5)
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per hemisphere. An example of a thrust protocol neural 
recording is shown in Fig.  2. The order of control and 
thrust protocols for noxious-evoked Sm activity were 
randomized to minimize any possible ordering effects in 
addition to a waiting period of 5 min between test pro-
tocols. The 10-s duration of noxious pinch stimulus has 
been used in previous studies of thalamic neuron respon-
siveness (Zhao et  al. 2006; Fischer et  al. 2009). Spon-
taneous (resting) activity (10  s) immediately preceding 
each pinch stimulus was subtracted from the 10-s evoked 
responses to yield a net discharge for the noxious stimu-
lus. Changes in evoked Sm response were determined by 
subtracting the net discharge of 1st pinch stimulus from 
the net discharge of the 2nd pinch stimulus.

Histology

Following experimental protocol completion, elec-
trolytic lesions were made by applying 30  µA current 
for 30  s. Afterwards, transcardiac perfusions were 
performed with an oxygenated calcium-free Tyrodes 
buffer solution followed by 4% paraformaldehyde in 
0.1  M phosphate buffer, pH 7.4 (Onifer et  al. 2005). 
The brains were removed and post-fixed overnight at 
4  °C, and then transferred to 30% sucrose at 4  °C for 
a minimum of 36  h prior to coronal tissue sectioning 
(30  µm) using a cryostat. DiI-labeled electrode tracks 
were located using a Nikon microscope equipped with 
fluorescent filters. Select sections were then stained 
with cresyl violet and postmortem histological recon-
structions were performed using a combination of stere-
otaxic coordinates records, DiI-labeled electrode track 
measurements (Hubscher 2006; Massey et  al. 2006; 
Reed et al. 2009) and electrolytic lesions (Fig. 3). Neu-
rons identified as being outside the confines of the Sm 
nucleus were excluded.

Statistical analysis

Changes in mean spontaneous responses (impulses/time 
bin) from control and  L5 thrust protocols were compared 
using a mixed model repeated measures ANOVA followed 
by Bonferroni post hoc t tests (IBM SPSS v22, Armonk, 
NY, USA). For spontaneous activity analyses, the 5  min 
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Fig. 2  Thrust protocol example. Shows a histogram (top) of neu-
ral activity recorded from a submedius neuron during 10  s noxious 
stimulation (clip) applied to the contralateral hindpaw (cHP pinch). 
Pinches were applied approximately 60 s prior to and 10–15 s follow-

ing an  L5 vertebra thrust [85% body weight (BW) 100 ms duration]. 
Insets show the waveform for the  L5 vertebra thrust and action poten-
tial of this thalamic neuron. Control protocols were the same only 
without the thrust

Fig. 3  Electrolytic lesion site. Photomicrograph showing recording 
and electrolytic lesion site (arrow) with Di-I in the thalamic nucleus 
submedius (Sm). HP hippocampus, TH thalamus. Scale bar 0.5 mm
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pre- and post-procedure recording periods were subdivided 
into five 60 s bins (60, 120, 180, 240, 300 s). To evaluate 
the possibility of a more immediate change in spontane-
ous activity due to lumbar thrust, changes in neural activ-
ity for the 10 s immediately following each procedure were 
also compared. Outlier values (≥ or ≤3 standard devia-
tions from the mean) were removed to prevent the undue 
influence of atypical thalamic neural activity (prolonged 
bursting or silence) during the 10  min protocol recording 
period. Outlier removal resulted in spontaneous activity 
from 86 to 91 Sm neurons being compared per time inter-
val. For evoked response analysis, 55/94 Sm neurons were 
tested (noxious testing was limited to one neuron per tha-
lamic hemisphere). Only Sm neurons exhibiting greater 
than 20% increase over initial pre-pinch baseline activity 
(10 s) at individual test sites were considered to be respon-
sive to noxious stimulation. These criteria ensured that the 
stimuli was applied within the neuron’s receptive field and 
resulted in the analysis of 35–43 neurons at a given site for 
single factor paired t tests comparisons. Data shown are 
mean ± SEM unless otherwise noted and statistical signifi-
cance was set at p ≤ 0.05.

Results

While the entire rostral–caudal extent of the submedius 
nucleus was searched, the majority (68%) of the 94 sin-
gle unit recordings were located in the rostral half of the 
nucleus having a mean depth of 6.41 mm (±0.28 SD) from 
the cortical surface. All Sm neurons were classified as noci-
ceptive specific (high threshold) by their lack of response 
to innocuous stroking (brush) and exhibited an excitatory 
response to noxious pinch (forceps). Lumbar thrust dis-
placement–time profiles mirrored those of the “inverted V” 
shape of clinical force–time profiles (Herzog et  al. 1993; 
Triano 2001) with a mean  L5 displacement of 1.02  mm 
(±0.47 mm SD).

Spontaneous activity

All recorded Sm neurons were spontaneously active to 
some degree. Prior to peripheral stimulation, 22 (23%) 
neurons had a low firing rate (<1 Hz), 69 (73%) a moder-
ate rate (1–10 Hz) and 3 (3%) a high firing rate (>10 Hz). 
Compared to the control procedure, there were no signifi-
cant changes in mean Sm spontaneous activity during the 
first 180 s following the  L5 vertebra thrust. However, spon-
taneous Sm activity was significantly decreased 180–240 s 
after the thrust (ANOVA: F = 4.8, df = 1.5, p < 0.05, post 
hoc: p < 0.005) (Fig. 4; Table 1). Decreased spontaneous 
Sm activity continued into the subsequent 60  s bin (from 
240 to 300 s) but failed to reach significance (Fig. 4). 

Evoked noxious response

The mean change in Sm neuron response to a 10  s nox-
ious stimulus applied before and after control and lumbar 
thrust was determined. Compared to control, inhibitory 
responses to noxious contralateral hindpaw stimulation 
were significantly attenuated after the  L5 thrust (Fig.  5; 
Table 2). Mixed neural responses were seen with noxious 
stimulation of the tail (inhibitory) and ipsilateral hindpaw 
(excitatory) following the  L5 thrust but these changes did 
not reach significance (Fig. 5). Figure 6 provides an exam-
ple of a Sm neuron exhibiting a mixed response to tail and 
ipsilateral hindpaw stimulation after an  L5 thrust. It is pos-
sible that random bursts and/or time-related changes in 

Control
L5 Thrust

Fig. 4  Spontaneous activity. Mean changes (±SEM) in spontaneous 
activity of nociceptive-specific submedius neurons before and after 
a control and high velocity low amplitude  L5 vertebra thrust proce-
dures. Note a significant decrease of spontaneous activity 180–240 s 
after the delivery of the  L5 thrust (*p < 0.005)

Table 1  Mean changes and SEM in spontaneous discharge activity 
(imps/time bin) of nociceptive specific Sm neurons following control 
or  L5 thrust protocols

Group: F = 4.8, df = 1.5, p < 0.05, post hoc † p < 0.005. Time (s): 
F = 0.53, df = 5.5

Seconds Control L5 thrust

Mean SEM Mean SEM

10 0.39 1.23 −0.28 0.80
60 4.75 3.65 −0.93 4.31
120 6.36 4.42 −0.88 7.72
180 3.35 5.56 6.64 6.16
240 11.63 7.39 −18.39† 7.13
300 0.98 9.03 −5.43 9.22
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resting baseline activity could have contributed to a mixed 
response (since the 10 s of resting baseline activity imme-
diately preceding the pinch stimulus was subtracted from 
the evoked noxious response); however, no significant dif-
ferences were found in pre–post mean baseline activity 
between the control and thrust protocols at these test sites.

Discussion

The vast majority of nociceptive-specific Sm neurons 
in the current study had large (bilateral) receptive fields 
and exhibited a low to moderate spontaneous activity fir-
ing rate. This is in agreement with previous findings from 
a study involving 204 Sm neurons and urethane anesthe-
sia (Kawakita et al. 1993). Kawakita et al. (1993) divided 
the Sm nucleus into four sub-regions and reported no  

significant differences in spontaneous activity between 
sub-regions nor between neuron responses recorded early 
or late in the experiment. We found that dynamic high 
velocity low amplitude thrusts similar to those applied in 
clinically delivered lumbar spinal manipulation produces 
a delayed and prolonged suppression of thalamic nocicep-
tive-specific Sm neuron spontaneous activity. The physio-
logical impact of this delayed but prolonged decrease of Sm 
activity is not currently known. Since widespread increases 
in thalamic spontaneous activity have been shown to occur 
in both acute and chronic pain conditions (Rinaldi et  al. 
1991; Hains et  al. 2005; Fischer et  al. 2009; Masri et  al. 
2009; Iwata et  al. 2011) suppression of thalamic activity 
may play a role in spinal manipulation’s clinical efficacy. 
Sustained changes in thalamic resting activity may in turn 
have neurophysiological consequences at the VLO or other 
efferent Sm connections as well. It is interesting to note 
that the delayed timing of this suppression of medial tha-
lamic activity, ~3  min after the thrust delivery, coincides 
with the timing (<5  min) of reported mechanical/thermal 
hypoalgesic effects following clinically delivered spinal 
manipulative thrusts (George et al. 2006; Fernandez-de-las-
Penas et  al. 2007; Fernandez-Carnero et  al. 2008; Bishop 
et  al. 2011; de Camargo et  al. 2011; Srbely et  al. 2013). 
Decreased neural activation in other central structures fol-
lowing manual therapy intervention has been reported in 
both animal and human neuroimaging studies (Malisza 
et  al. 2003a, b; Sparks et  al. 2013). Decreased activity at 
thalamic and/or other key spinal/supraspinal pain modula-
tory centers may serve as a key neurobiological mechanism 
of spinal manipulation.

Studies using bilateral Sm electrolytic lesions indicate 
that Sm neurons are involved in supraspinal and/or spi-
nal mediated inhibition of nociceptive input (Roberts and 
Dong 1994; Zhang et al. 1995). We observed a decrease of 
Sm neuron activity evoked by noxious contralateral hind-
paw stimulation after the control procedure. This inhibi-
tory Sm activity was attenuated after the  L5 thrust which 
suggests that lumbar thrusts may act to modulate nocice-
ptive activity in higher pain centers. Despite Sm neurons 
typically having large (often bilateral) receptive fields, the 
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Fig. 5  Evoked response. Mean changes (±SEM) in neural responses 
to 10 s pinch applied to three sites [tail, contralateral hindpaw (cHP), 
ipsilateral hindpaw (iHP) before and after control (no thrust)] or high 
velocity low amplitude  L5 thrust procedures. All submedius neurons 
exhibited greater than 20% increase over baseline activity to the first 
applied pinch stimulus at each site. (*p < 0.05)

Table 2  Mean changes and SEM of noxious-evoked response at three sites following control or  L5 thrust protocols among nociceptive-specific 
Sm neurons that demonstrated a minimum of 20% increase over baseline discharge on initial pinch stimulus at each site

There was a significant decrease in the contralateral hindpaw response after the  L5 thrust (* p < 0.05)

Change in noxious-evoked activity (imps)

Tail (n = 35) Contra-HP (n = 43) Ipsi-HP (n = 39)

Mean SEM Mean SEM Mean SEM

Control 0.60 6.38 −11.2* 2.33 0.14 3.38
L5 thrust −8.51 4.82 −4.85 2.36 1.86 5.31

t = 0.99, df = 34, p > 0.05 t = 2.3, df = 42, *p < 0.05 t = 0.34, df = 38, p > 0.05
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contralateral hindpaw was the only testing site to demon-
strate a significant change following  L5 thrust. This is likely 
due to a greater preponderance (64%) of anatomically 
crossed ascending spinal projections to the Sm in the rat 
(Dado and Giesler 1990). While the changes did not reach 
significance, the  L5 thrust decreased Sm neuron response 
to tail pinch and increased Sm neuron response to ipsi-
lateral hindpaw pinch. Sm neurons exhibiting inhibitory 
responses to noxious stimulation at one anatomical site 
and excitatory responses at another have been previously 
reported (Kawakita et  al. 1993). These alternating noci-
ceptive responses seen after  L5 thrust may be attributable 
to anatomical differences in peripheral nociceptor density, 
nociceptor sensitivity, and/or to the anatomical proximity 
of  L5 dorsal root ganglion cells to the lumbar thrust site 
compared to the sacral (S1–S4) dorsal root ganglion cells 
innervating the tail (Danneman et  al. 1994; MacKenzie 
et al. 2015).

Despite both local and remote somatic hypoalgesic 
effects being associated with clinical spinal manipulative 
thrusts; the peripheral and/or central pathways, structures 
and mechanisms responsible remain unknown (Wright 
1999; Bialosky et  al. 2009a). Basic science (Vaillant 
et  al. 2012; Reed et  al. 2013, 2014b, 2015a, b; Onifer 
et al. 2015; Song et al. 2016) and clinical (Bishop et al. 

2011; Nougarou et  al. 2013; Sparks et  al. 2013; Bialo-
sky et  al. 2014; Nougarou et  al. 2014; Page et  al. 2014) 
studies have begun to focus much greater attention on 
potential physiological mechanisms associated with 
non-pharmacological manual therapy interventions. A 
functional magnetic resonance imaging study investigat-
ing supraspinal activation related to noxious mechani-
cal stimulation pre- and post-thrust spinal manipulation 
reported that while bilateral activation of the thalami, 
cerebellum, amygdala, periaqueductal gray, insular cor-
tex, anterior cingulated cortex, somatosensory cortices, 
supplementary motor area, and premotor areas occurred 
with peripheral noxious stimulation; only the insular cor-
tex demonstrated a significant relationship between pain 
reduction and post-spinal manipulation (Sparks et  al. 
2013). While this small (n = 10) clinical imaging study 
was unable to draw any definitive conclusions, it is inter-
esting to note that the insula receives direct projections 
from medial thalamic nuclei (including the Sm) and that 
these nuclei are thought to be more involved with the 
affective and motivational aspects of pain which may in 
turn contribute to the efficacy of spinal manipulation and 
other integrative medicine interventions (Bushnell and 
Duncan 1989; Basbaum 2000; Jones 2007; Bialosky et al. 
2009a).
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Fig. 6  Example of Sm neuron response. Histogram of Sm neural 
responses (impulses/1 s bin) to noxious pinch at three sites (tail, con-
tralateral and ipsilateral hindpaw) in both control and  L5 thrust pro-
tocols. Gray horizontal bars indicate noxious pinch application and 
arrowhead indicate time of  L5 thrusts. Note a decrease in tail and 

contralateral hindpaw post-thrust noxious response and an increase 
in ipsilateral hindpaw noxious response following an  L5 thrust. This 
neuron was located in the rostral Sm nucleus at 6.24  mm from the 
cortical surface
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Conclusion

To our knowledge, this study is the first to investigate 
the effects of lumbar vertebra high velocity low ampli-
tude thrusts on central spontaneous neural activity and 
noxiously evoked responses in the medial thalamus. 
The results indicate that lumbar vertebra thrusts cause a 
delayed and prolonged decrease in nociceptive-specific 
Sm neuron spontaneous activity. In addition, inhibitory 
responses to noxious contralateral hindpaw stimulation 
are attenuated following  L5 thrust. Additional acute and 
chronic pain studies need to be performed in the Sm as 
well as other thalamic subnuclei to determine if these 
neural changes occur more globally within the thalamus 
and/or impact nociceptive somatosensory processing at 
higher central centers.
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